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ABSTRACT
Let u be an r-semistable K-regular probability measure of index
a € (0, 2] on a complete locally convex topological vector space E . It
is shown that the topological support Su of u 1is a translated convex I
cone if a € (0, 1) , and a translated truncated cone if « € (1, 2] .

Further, if a =1 and u 1is symmetric, then it is shown that Su is

a vector subspace of E . These results subsume all earlier known results
regarding the support of stable measures. A result regarding the support
of infinitely divisible probability measure on E {s also obtained. A
seminorm integrability theorem is obtained for K-regular r-semistable
probability measures u on E . The result of de Acosta (Ann. of Prob-
ability, 3(1975), 865 - 875)and Kanter (Trans. Seventh Prague Conf., (1974),
317 - 323) 1s included in this theorem as long as the measures are defined

on LCTVS and seminorm is continuous.

The research of this author was partially supported by the Office of Naval
Research under contract No. N00014-78-C-0468.
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1. INTRODUCTION

Let E be a complete locally convex topological vector space (LCTVS)
and let u be a stable probability measure (p.m.) of index & € (0, 2] 3
then it is shown by Tortrat [15] that for o ¢ 1 t_msu 3”the suppqrt of u,
is a certain cone. (if u 1is symmetric, then it is shown by Rajput [13, 14]
that S, is a subspace for all « ; this result for 1.<a<?2 is also
obtained by de Acosta [1]). Furthermore, if p is a-continuous seminorm
(in fact measurability is enough) on E , then it is shown by de Acosta [1]
and Kantor [8] that

f p8(x) u(d*) <w, forall 0<6<a.
E
A natural and nontrivial generalization of stable measures is the class

of r-semistable measures, which was first introduced and studied on the
real 1ine R by Paul Lévy [12]. Later, Kruglov, in an interesting paper [9],
obtained a qdﬁte explicit form of the characteristic function of r-semistable
p. measyres on R and showed that this class has properties similar to
those of stable p. measures (similar situation is true in Hilbert space is
shown by Kruglov [10] and by Kumar [11]). Partialy motivated from these
papers, we raised and completely answered, in this paper, the question of
whether r-semistable p. measures have properties similar to those of stable
P. measures mentioned above. Explicitly, we obtain the following results:
Llet u bea k-regular r-semistable p. measure (see Definition 2.1) of index
a € (0, 2] on a complete LCTVS E , then Su » the support of u , is a
translated convex cone or a translated truncated cone according as whether
O<a<l or 1<a<?2; further, if a=1 and yu {s symmetric, we
prove that Su is a subspace (Theorem 3.2). This result subsumes all
earlier known results regarding the support of stable measures [1, 4, 13, 14,
15]. (A general theorem which gives a formula for the support of K-reéul;r -

infinitely divisible (1.d.) p. measures on E and which includes some
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results for the supports of i.d. measures derived in [4, 14, 15] is also
obtained). Let u and E be as above and p a continuous seminorm on
E; then [ pc(x)_u(dx) <w {f 0<68 <a . This result includes the
seminorm 1Etegrab111ty theorem for stable measures in [1, 8], as long as
the measures are defined on LCTVS and p is continuous.

Qur proof of the support theorem for i.d. measures uses similar ideas
to those of Brockett [4], who proved part of our result in Hilbert spaces ,
and Tortrat [15, 16], who proved similar results under different hypotheses
in certain LC spaces. Our techniques of proof of the support theorem for
r-semistable measures, however, seem new and quife interesting. Our proof
of the seminorm integrability result is classical and has the drawback in

that it uses a strong central 1imit theorem in Bihach spaces [2].

2. PRELIMINARIES

Unless otherwise stated, the following conventions and notation will
remain fixed in this paper:

All vector spaces considered are over the real field R and all topo-
logical spaces are assumed Handsdorff. If u and v are two finite K-
regular p. measures on the Borel g-algebra 8 of a topological vector
space E , then u*“ and u , v will denote, respectively, u convoluted
n-times and the convolution of u and v . If a#0, then T, will
denote the map on E defined by Ta(x) =ax , x € E; further T, will
L . will denote the degen-

denote the measure y o T; Forany x€E, §

x
erate measure at x . E and E* will,'respectively. denote a complete LCTVS
and its topological dual, and MK(E) will denote the cla;; of all K-regular
p. measures on £ . If_ A {s a subset of a topological space, then A will
denote 1ts closure; finally, e will denote the zero element of E .

We will now give the definition of r-semistable p. measures and some
of their properties pertinent to this paper. This definition and results

are taken from Chung, Rajput and Tortrat [5], which may be referred to for
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other properties of r-semistable p. measures. The first result below dealing
with 1.d. p.m. {s taken from {6, 7] .

Definition 2.1: Let E be a LCTVS , u € M (E) and 0‘< r<l.
Then y 1s said to be r-semistable if there exists a K-regular p..measure

v , sequences uﬂgn. a >0, and QMEE,&M&ﬂM“&ﬁMSﬂ“Me

n
of positive integers {kn} such that i

kn

- —r

and

as n — = (the symbol ' % ' will always denote the weak convergence).

'(i) Let u € MK(E) be i.d. then there exists a measure F (called
the Lé@y measure), a quadratic form Q on E* , an xo,e E , and a compact
convex circled subset K of E with F(Kc) < » such that, for every

f € E* , the characteristic function u of  has the representation

W = eptifixg) - JaN + [ (. xaF00)
E

where u(f, x) = e'T(X) L1 L 4£(x) I (x) (I, 1s the fndicator of K) ;
further, Q@ and F are unique and Xq depends on the choice of K .- For

the sake of simplicity of notation we will use the notatfon [xo. Q, K, F]
to denote the above representatfon for u .

(11) Let u be as above with the representation [xo. Q K, F].lthgn
there exists a unique continuous (in weak topology) semigroup {usi s > 0}
of K-regular 1.d. p. measures with u = u‘ (us is referred to as the sth

root of u and has the representation (s Xg» $ @& K, sF]), and




(5% = St (2.1)

(i11) Let u € MK(E) and r € (0, 1), then u 1s r-semistable if and
only if u 1is i.d. and there exist a unique o € (0, 2) and x(rn) € E such
that

p =T
r

nfa ¥ T S(r) (2.2)
for all n=1, 2,... . The number o« 1is referred to as the index of .
(a = 2 corresponds to the Gaussian case). -

(iv) Let u € MK(E) then u 1is l-semistable « y is r-semistable for
every r € (0, 1) o u is stable.

(v) The class of stable K-regular p. measures are properly contained

in the class of r-semistable p. measures for every fixed r € (0, 1) .

3. SUPPQRT THEOREMS FOR I.D. AND r-SEMISTABLE PROBABILITY MEASURES

We recall that the support of a finite Borel measure u on a topological
space is, by definition, the smallest closed set (if it exists) with full
u-measure. If yu 1{s K-regular (or even t-regular) the support of u always
exists. The main purpose of this section is to prove the following two
theorems.

Theorem 3.1: Let yu be an i.d. K-regular p.m. on E with represen-
tation [e, 0, K, F] :

(1) Let % be the class of all convex circled Borel nbds. of o di-

rected by reverse set inclusion; set Fy *® FIXS, Fy * F/K n U°, 3 * xdFU(x).

vo * e(FO) »and v, = e(Fu) . (note aU,G E , see [7]), then
5, [0 - (5, * )T + s“oT : (3.1)

In addition 1f {s, 1 1s tight and &, is any 1imit pt. of {5, }, then
U u

Kc and uc , respectively, denote the complements of K and U .
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where G(F) is the semigroup with zero element which is generated.by Sp »
the support of F (sF = {x € E: F(v ) > 0, for every open nbd. V, of x}).
(11) (Tortrat) 1f { Pe(x) dF(x) < = , where P fs the Minkowski func-
tional of K which is assumed to take the value += off the set QH nK ,
then {s ﬁ} is tight (a is,as in (i)); hence Su = a + G(F) , where 8,
is any limit paint of {6 } .
(111) If I pK(x) dF(x) <, then S = G(F) + A, where A 1is a closed

set.
Theorem 3.2: Let u be a K-regular r-semistable p.m., r € (0, 1),
of index o« € (0, 2] on E.
(1) If « € (1, 2] , then Su is a translate of a truncated cone;
further, if u is strictly r-semistable (i.e. x(r) = @ in (2.2)), then
S# is a truncated cone. \
(i1) If a € (0, 1) , then S" is a translate of a convex cone; further,
if u 1is strictly r-semistable, then Su is a convex cone.
(i1i) If a =1 and u 1is symetric, then S" is 'a subspace.
Remark 3.3: As hinted in Section 1, part (iii) of Theorem 3.1 and the
fact that 5 =a+ G(F) under a hypothesis similar to { Pr(X)dF(x) < = ,
was obtained, in the Hilbert space setting, by Brockett [4] and the last
statement, under certain other hypotheses, was obtained, in LCTV setting,
by Tortrat [15, 16]. Our proof of Theorem 3.1 uses similar {deas as those
of [4]; however, because of the weaker structure available in arbitrary
LCTV spaces, modifications of techniques are required. Since clearly, from
Definition 2.1, every stable measure is r-semistable for all r , Theorem 3.2
includes the support results regarding stable measures obtained in (1, 4,13,
14, 15] ; and, in view of Section 2, the above theorem also provides the

corresponding results for 1-semistable measures.
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For the proof of Theorems 3.1 and 3.2, we will need the following 1emmas.

The proof of Lenma 3.4 is elementary and Lemma 3.5 is well known. Lemma 3.6
was first concefved in [17] in the locally compact group setting; the proof
presented here fs similar to the one in [17], but certain details need to be 1
verified. The last Lemma is taken from [5]. |
Lemma 3.4: Let re (0,1) and a>1. Set A= (% k=1, 2,....
[/f™ ,m=1,2,...} , where [x] denotes the integral part of the number
X . Then A 1is dense in [0, ») if a > 1, and A is dense in [0, 1]
if a=1.
Lemtma 3.5: Let u and v be two K-regular p. measures on a LCTVS E

and a €R ,a#0. Then

STau-aSu and su*v'[su"'sv]

Lemma 3.6: Let {v } and {a} be two nets of K-regular p. measures

on a LCTVS E and let. v be a K-regular p.m. on E . Assume v = Vp * A,
for each n, (v} fs tight, and v —> v . Then 2 — 6, and

n
S, = QLSh S“nT . Further, 1f S, + with n , then s = ¥ svnj'.

Proof: From [6], {.xn} ‘is tight; hence it has a subnet which converges
to a K-regular p.m. A . This implies v = v « A . Hence (using character-
istic functions) A = 69 . WNow, by repeating the above argument replacing
{A,} by any subnet of it, we have that each subnet of {A;} in turn has a
subnet converging to 8y - This shows A, L 2N 8y +

Now we prove the second part. For each fixed m , let U= E\Pﬂ .
Then vn(um) = 0 (by the definition of the support), for all n lll!-. But,

since v, —1» v , Hmninf vp(Uy) 2 v(Uy) . This fmplies "v(Y) =0,

forevery m. S0 S N [Y S J. To prove the reverse inclusion, -

let x € ﬂ[,"U S J and U be an arbitrary open nbd. of & . It follows
m n2M v,




-

that there exists a subnet {m, } of {m} such that (x +w) n S, o,
m
k

where W {s a closed nbd. of o such that W+ WcU . Then WgU-y,

for every y €W . Fromthisand v=v_« 2 , we have
M ™

vix +U) = £ Vm, (U-y+x) A,,,k(dy) > vmk(w + x) Amk(w) ,

for all k . Taking k large and noting that lmk ., §, and

m (H + x) >0, for all k (as shown above), we have v(x + U) > 0 . This
shows x € S » which completes the proof of the second part. The proof of
the last part is now obvious. .

Note that in the above the hypothesis of tightness on {v } is needed
only to conclude Ag =—> &, - Thus if A, X, 8y were already in the
hypothesis of the lemma, then the conclusions would hold without the
tightness hypothesis on {vn} . This observation will be used in the proofs
of Theorems 3.1 and 3.2. '

Lenma 3.7: Let u be a K-regular strictly r-semistable p.m. of index
a€(0,1) on E. Then a(f) = sl | e'T(X) . 1)dr(x)3 and
}' pK(x) dF(x) < = , where F 1is the Lévy measure of u and K is the com-
pact convex circuled set appearing in the Lévy representation of . (note
u fs 1.d.) .

We are now ready to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1 (i): It is shown in [7] that v, » &, sy

U
With u(f) = exp(f (!X} 1 _ 1 #(x))eF(x)} , that g = vy e ‘a,
with A, f.d. and K-regular, for every U€ % , and that 3, ., 8

*AU,

(note u = [o, 0, K, F]) . Lemma 3.6 applies and we get _

S =nfuU (s +a)T. Then, since u = u, » v, , we get (3.1). To

oo v owy Wy U ' 0" "0

prove the second part denote by 8y the 1imit of a subnet of {G‘U} and- -

use the same notation for the subnet. Then uj » 5  "vy« Auycau a

Ag*8y .a——> 8 and vy~ ug s, . Thus, since S, + with U,

U U
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we have, from Lema3.6, s = {js +a . Therefore, S =a+yS +5

Mg U u Yo
But (see, for example, [14]), US +S =G[F) , we have s, =a+ GlFy .
u 0

Proof of Theorem 3.1 (ji): For any f € E* , we have

[flay) = | f f(x)d F(x)| < p;O(f) f p(x) d(F(x) , :
Knu® K

< const. p 0(f) :
K

g : hence, by the Bipolar theorem, {aU} is contained in a compact subset.
S ' { s i
Showing ‘SaU} is tight. i

Proof of Theorem 3.1 (iii): Denote by M the measure which is equal

’ to F on K and Q0 off X and recall that u = Hg * Vg (see the proof
of (i)) . The condition [ pﬁ(x) dF(x) < = implies
K
if(a,) . .
uo(f) = e 0 exp{ | (e’f(x) -1 - 1f(x ) dM(x)}, for some ao_e E,
3 1+ py(x)

(see [6]). Now define, for everyye % (% is as in (i)) , My =M on
(KA U)® and M(B) = [ p(x) dM(x), if B is a Borel subset of KnU .
B
: Clearly MU is equivalent to M and, since MU <M, MU is a Lévy measure

[6]. Denote by o the K-regular i.d. p.m. with ch. function

‘ &U(f) = exp{ é (eif(x) -1 - -—iﬁL§L- )dMU(x)} H

1+ pK(x)

e

it follows that w, « s_ao * ay « ) » for some K-regular i.d. p.m. &, , ;

for every U € % . Now, since for f € E*,

fgxg
dM
P (x) fx)

< [ = Jamx)| + | J [ dF(x)!
B ,(Kn£)° 1+ pylx) Y ,KLU 1+ pylx) '

J +p 0 denotes the Minkowski functional of K
K \

0 , the polar of K .
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P (x)F(x)
= T8 ar(x) 4+ | g f—:zx—— dF (x) |

KOU® 1 + pi(x) KW 1+ pi(x)

£ Polf) [F(LC) + { pE(x) dF()] 5 .
K

it follows that b, = [ [—Lz—]dnu(x) belongs to E and
(b 1+ pp(x)

)
&U(f) =e U exp{ [ (eif(x) - 1) dMy(x)} . Therefore, since
£

K{'u P(x) dMy(x) = { pﬁ(x) dF(x) < = , using what we have proved in (ii) and

replacing K by KnU (with U a closed nbd. of o), we have, for some
] = ] a ] PN
bu,e E, Sa"J bu + Glﬁui bu + G(M) , since M 1is equivalent to "U .

Hence

(for a fixed closed nbd. U of ),

s+ b + T80 5, + 5, ]

'ma

where A=S., +a,+b' (note GIFJ=[6M) +5S 1) .
8 0 u v vo

U

This completes the proof of Theorem 3.1.
Proof of Theorem 3.2 (i): According to [5], u can be centered, i.e.,

there exists an xg € E and a strictly r-semistable p.m. v with the same

index such that uy = v Sy ¢ Thus, to complete the proof of (i), we need
0

to show that S 1is a truncated cone. We first show that ss ¢S  , for

any s>1. Let s>1 andset t=s-1>0. Using Lema 3.4, we




choose a sequence {kn} of positive integers such that 1 < ky 5_[1/r"]

and t, = /o ky > t, as n > = . Then, since (1 = 1/a)

- 0 (note
1 <a)sas n+o, and A1 - 1/a) Vo k = r“kn ., we have r"kn -0, as
‘ ‘ n +« . Therefore, by semigroup and continuity property of (uP: p > 0}

(see Section 2), we have

; ur"kn * “l-r"kn -
and
n = u]'rn5q_-!-° T
' n M owk *k
) as n -+« . Therefore, using the fact that. u" kn={u ) © n

] * Trn/a o
it follows, from Lemmas 3.5 and 3.6 (note that (uP: 0 < p < py} fis tight
(see Section 2)) , that

(k) -

5, es, " +5,7 (3.2)
l for each n=1, 2,..., and
! s =n(us 1. (3.3)
f ! o=l n3j *a
‘ Lo (k,)
i [ where Su denotes the k -fold sum of Su . Now let x € Su . Then, by
PR :

(3.3), for each j =1, 2,...,

7. (3.4)

X € S
[JEB ¥n

Let 9 be the set of pairs (W, n) , where W 1{s an open nbd. of x and n
is a positive integer such that W n Su ¥ ¢ . Define the relation
n




-
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e

R T Ty

< on 3 by (w,. ny) _<_(H2, "2) if and only if W, c W, and no<n, .
Using (3.4), we can easily verify that (7, <) 1is a directed set. Let

x(u’ n) be any elemen? in Wn Su and let t(w’ n) = tn . Then

n

ey, nt is a subnet ?f {t,} and X(w, n) ¥ X - Now, by (3.2),

t(w’ n)x + X(W, n).e Su ; and,'cleafly, t(“’ n)* + X(W, n),” tx + X = sx € Su'
since S, is closed. We will now show that su is a semigroup. Llet

X, Y € Su . Choose, as before, kn's such that tn 2 r"/“ kn +1 . Since

y € [ngj S“nT , for each j =1, 2,... , (from (3.3)), we can define,

as above, a net {y(w’ n)} such that y(w’ n) €EWnNn Su and
‘ n

y(w, n) * Y . Also, if 't("’ n) = tn » then, as before, {t(u’ n)} is a
subnet of {t } . Now t(“' n)* * Y, n),e Su (by (3.2)); hence , since

t(w, n)x + y(w, n) * x+y and Su is closed, x +y € su .

Proof of Theorem 3.2 (ii): Again we write yu = ug * 8, with Hg

0

strictly r-semistable p.m. of index a € (0, 1) [5], and show that Su
0

is a convex cone. First we show that Spo is a semigroup. Let B be a
Banach space and g a continuous linear map from E to B . Let

A= ugé g'] , then we assert that A 1s strictly r-semistable with the
same index a . To see this one first notes that ) 1{s K-regular i.d.

and that for any ratfonal s >0, 5= u; og” (this uses the fact that
the factor measure appearing in the definition of a K-regular i.d. measure
on a LCTVS is unique). Then using continuity of thﬁ semigroup, one obtains

1

that 15 = "3 og  , for allreals s > 0 . Hence

n N4

A = uo °g = Tr.n/Q uo ° 9-1

= Trn/ax » showing A 1s strictly

r-semistable of index o . Now using the fact that su is the projective
: 0

1imit of supports of measures of the type ug ° 9'1 Ksee 3 , it will

follow that su is a semigroup, 1f we can show that Sx is a semigroup.
0

e o e
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From Lemma 3.7, Ai(f) = exp{ g (eif(x) - 1)dF,(x)} , f € B* , where B*
is the topological dual of B . Let v =21 « §y » where a = [ x dF(x)
K

(note that since, by Lemma 3.7, [ P dF, <=, a€B; here K and p,
K
are as in Theorem 3.1). Let Un denote the closed unit disc around ¢ in

B of radius 1/n,n=1, 2,... ; we will show §, 26,
n Un
5a is as defined in Tﬁeorem 3.1(i) . Since we already know that {sa }
U, 4 Un
is tight (Theorem 3.1(i11)) , to prove 8, v, 8, » it 1s sufficient to
n

¥ Ga » where

prove that 8, (f) —> sa(f) » for every f € B* . But this follows from
if(a )
e ' M

n
| i eif(a)l j'lgéu £(x) dF, (x)] S-DKO(f) Kéﬁ Py dF, » for every

n n
f € B* and the dominated convergence theorem. Thus, since Sx = Gtij +a

(Theorem 3.1(ii)) = S, +a,we have §, = ETF;T . Showing s, fis a semi-
group, and hence suo is a semigroup. Now we will show that S“B = Suo » for
t>0. Let F be the Levy measure of u, ; then, by Lemma 3.7,

uo(f) = exp{ é (eif(x) - 1)dF(x)} . Therefore, letting g as above,

i(f)_- exp{ é (eif(g(x)) - 1)dF(x)} = exp{ £ }(eif(g(x)) - 1)dF(x)}

{970

=exp( [ (e'TX) L 1)rog™l(dx )1 = expt g(e"(x) - 1)d6(x)},
B\{6} |

for f € B*, where G = Fog™'/B\{6} . This, the fact that G {s Levy (this

can be proved directly by just using the definition of.a Lévy measure), and

the uniqueness of Lévy measure, imply that G = F.-o Thus

AL = exp( { (eif(x) - 1)tF,} (see Section 2(11)) ; therefore

Sy " ZtFA = GIFXS - Hence, since S , {s the projective 1imit of sup-
A

.uo
ports of measures of the type xt [(13], we have S t* Suo . To finish the
¥o

W




proof we need only show that ssu

g_Su , for 0 < s<1 . This we do
0

0
in the following:

For s € (0, 1) , choose by Lemna 3.4, k € {1,..., [L3} such that

r
k
D

n/a M .
r kn —> §,385 N —> = ., Now by using the facts ug n Trn/a L

and St=S » t>0, weget
llo Ho

(k. )_
= N/ n
Suo ph/a [Suo ]l.,

k)
where S " is the kn-fo‘ld sunof S . Hence for x€S ,
uo L) %0

[+ 3
PV knx,esu n/a kX —> SXs 8 N —> = .

» S0 SX €S , since r
0 u
Proof of Theorem 3.2(iii): Since u 1is symmetric and i.d., Su is

n n
a subgroup, by Theorem 3.1. Now, pr * u] T . p and the fact that ut

is symmetric {.d. 1mpl_y that .

I= s

n
(v s"+sl-r" .

3

and 8 €S
1-r

hence Su is a subspace.

Remark 3.8: The fact that Su

n- Consequentiy, - sussu , forall n=1, 2,... , and

0 is a subgroup and that S‘lot - Suo
shown above in the proof of part (ii) can also be recovered from [16]. But
in order to keep the paper self contained we relied on our result rather

than using [16].

4, SEMINORM INTEGRABILITY THEOREM FOR r-SEMISTABLE MEASURES
As we noted in the introduction, the proof of the result of this section -
1s classical (see, for example, [3]); therefore, we will only give an outline

of the proof and refer the reader to [11] for details, where a similar result
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is obtained in Hilbert spaces. f
Theorem 4.1: Let u be a K-regular r-semistable p.m. of index

a€ (0, 2) on E and let p be a continuous seminormon E . Then

£p‘(x) ul(dx) <=, (4.1)

I if §<a.
Qutline of the Proof: Let v=*yuwyp, (p = T_]u) » the symmetrization .

; of u . By Fubini's theorem, it is sufficient to prove (4.1) for v .

Using some arguments of the proof of Theorem 3.2(1i), we note that v is

! (K-regular symmetric) r-semistable of the same index a . Let N be the
quotient space E/p'](e) s If R=x+ p'](e) . set |[%] - p(x) , then

(N, JJ-) 1s a normed space, and A s v ¢ T isa symetric K-regular .
-r-semitstable p.m. of index a (here T i{s the usual quotient map). Since
a K-regular p.m. on a metric space has a separable support, we can assume
that there exists a separable Banach subspace B of the completion &

of (N, [-]]) such that A5(B) =1, for all s >0, (one such B {s the

i closure in '5 of the supports of A5, s positive rationals). Since
prsd(u wu) = £ "5("6 dx ,

by the change of varfable, we need to prove (4.1) for a symmetric r-semistable

- v -

p.m. of index a defined on a separable Banach space B8 . This {is outlined
beiow:
. According to [5], we have

ky
» _l’
Trn/c A A

where k. = [-1?] . This and Theorem 10 of [2] implies that
r




-

. W
kn Trn/ax——v F,

on complements of nbds of ¢ in B , where F s the“Léby measure of 1 .
Now repeating the proof of Theorem 3.4 of [11], for given e > 0 and
positive integer m, one can choose t, such that if t > t, , then

t
-b;: 1+ e)-] i-q—zt(;"%) <a bm(T +¢€), (4.2)
A

where a=1/r , b= pl/a

and Qx(t) = A{X €B: [|x]] >~ t} . Now using
(4.2) and following the proof of Theorem 3.5 of [11], one obtains

g uxu‘ dy < = ; which completes the proof.

Remark 4.2: It is worth noting that this theorem also provides a third
proof of the seminorm integrability result for stable p. measures, which
is different from the first two (obtained by de Acosta [1] and Kanter [8]),
as long as the measures are defined on LCTV spaces and p 1{s a continuous

seminorm.
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Theorem 3.2(ii), has been pointed out to us by several readers.
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